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The motion of a cavity in a vertical rotating tube 
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Department of Mechanical Engineering, University College London 

(Received 6 July 1972) 

Experiments are performed to measure the upward velocity U of the cavity 
resulting from the draining of a vertical liquid-filled tube of radius b, which 
rotates about its axis at  various speeds. With no rotation the cavity moves so 
that the Froude number U/(gb)t  is constant, where g is the gravitational accelera- 
tion. For high angular velocities Q, however, the cavity appears to adopt a con- 
stant value of the Rossby number U/Qb,  implying that gravitational forces are 
dominaked by centrifugal forces. The cavity velocity finally achieved is found to 
be the same as the maximum group velocity of infinitesimal waves, so that 
U / Q b  = 0.52. Approximate theoretical models which satisfactorily describe the 
development of the motion are constructed. 

1. Introduction 
In  the experiments reported in this paper, a long tube of radius b filled with 

water and held with its axis vertical was rotated steadily about its axis at  various 
speeds, denoted by Q. After the water had acquired rigid-body rotation the tube 
was opened at  its lower end and an axisymmetric air-filled cavity then propagated 
in the tube with velocity U while the water drained from the open end. These 
experiments form part of a programme of research into the motion of gas slugs 
in various flow situations and for the remainder of the paper the cavity will be 
termed a slug as is usual in non-rotating systems. In  the absence of rotation the 
gravitational force will determine the motion and the system will operate at  
some constant value of Froude number U/(gb)*, where g is the acceleration due to 
gravity. At high values of Q, however, it  is anticipated that centrifugal forces 
will be dominant so that the motion will be characterized by some constant value 
of the Rossby number U/Qb. We are interested here in studying the transition 
between these two different regimes. 

For high values of Q, experiments in a related system have been carried out 
by Benjamin & Barnard (1964). In  their experiments, which were conceived as 
a possible laboratory demonstration of the vortex breakdown phenomenon, the 
tube was horizontal and rotational speeds were arranged so that the ratio Qzb/g 
took values from 41 to 138. These were presumed to be high enough to ensure 
that centrifugal forces predominated over gravitational forces so that the motion 
would be approximately axisymmetric, and it wits found that the Rossby number 
was sensibly constant a t  a value of approximately 0.38. The radius of Che slug 
some way downstream from its nose was found to be approximately &b and the 
slug generally exhibited waves on its surface which were thought to be an 

33-7. 
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essential feature of the flow and not caused by any vibrations of the 
apparatus. 

Although they had no prediction of the numerical value of Rossby number 
which would be achieved, Benjamin & Barnard at first expected to observe a 
flow, designated ‘type A ’, which would be steady in a frame of reference moving 
with the slug and undisturbed far upstream. In fact, their experiments demon- 
strated the existence of the Taylor phenomenon, which they called a flow of 
type B, in which a continually lengthening column of fluid moved ahead of the 
cavity and would thus ultimately interfere with the uniformity of the flow far 
upstream. The velocity of propagation of this column was found experimentally 
to be about 0 . 9 2 ~ ~  = 0+48Qnb, where co is the theoretical propagation velocity of 
the front - that is, the maximum group velocity of infinitesimal waves. Experi- 
mentally the slug velocity was found to be U = 0 . 7 3 ~ ~ .  During their investigation 
Benjamin & Barnard discovered a theoretical argument which demonstrated 
that if gravity is neglected a mathematical solution of an idealized model of the 
flow past a constant-pressure slug cannot be of type A .  This result was confirmed 
by rigorous proof in an appendix to their paper by Fraenkel. 

For high values of Q it is natural to compare results from the present experi- 
ments with those of Benjamin & Barnard but it must be stressed that the two 
systems are essentially different in view of the different attitudes to  the gravita- 
tional field. In  the present arrangement, for example, the cavity is axisymmetric 
for all values of fi whereas in Benjamin & Barnard’s situation, Q2b/g was 
necessarily large in order to make the motion approximately axisymmetric. 
Consider the general situation in which the tube is inclined a t  an angle a to the 
downward vertical direction. If surface tension and viscous forces are considered 
unimportant then dimensional analysis suggests that 

fJU/(gbP, U / Q h  a1 = 0. (1) 

Alternative forms which involve bubble velocity in only one of the groups are 

or 

In  these forms the dimensionless group Q2b/g expresses the ratio of centrifugal 
to gravitational forces and this is the parameter which is varied in the ex- 
periments. Values of a in the range in < a < n correspond to situations in which 
the tube would be opened at its upper end and in these cases, for finite values 
of Q, the slug can penetrate only a finite distance from the mouth of the tube; 
with a = n, for example, this distance would be fi2b2/2g. In  the range 0 < a < in, 
however, the slug propagatesindefinitely for all values of Q2b/g. This consideration 
emphasizes the fact that a is a pertinent parameter; the present experiments 
relate to the condition a = 0, while Benjamin & Barnard’s experiments had 

In the absence of rotation it is anticipated that the Froude number U/(gb)* 
will adopt a value which is constant for a given a and which will be denoted here 
byf2(0, a).  Dumitrescu’s (1943) experiments showed that f2(0 ,  0) = 0.49, in good 
agreement with his own theory, while Zukoski’s (1966) experiments gave 

a = in. 
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f,(O, t7r) = 0.75, which agrees well with Benjamin’s (1968) theory for this situa- 
tion. When Q2b/g is moderately large, it is reasonable to anticipate that the 
effect of gravity will be dominated by that due to centrifugal forces and that 
the Rossby number U/Qh = f3(Q2b/g, a)  will then adopt a value which is almost 
constant for a given a. The present experiments, which are described in $ 2 ,  
do show that f3(Q2b/g, 0) varied very little from a value 0.52 over the range 
12 < Q2b/g < 27. Benjamin & Barnard interpreted their own experimental re- 
sults, which covered the range 41 < Q%/g < 138, as showing f3(Q2h/g, &) to be 
essentially constant with a value of about 0.38.t Whether or not 

f3(m, 0 )  = f 3 ( 6 0 7  4 4  
is left as an open question for the present. 

Benjamin & Barnard’s and Fraenkel’s proofs that a steady motion relative to 
the slug is theoretically impossible are restricted in their applicability by the 
requirement that velocities are finite everywhere, and the implications of this 
restriction may be seen by considering their arguments. Benjamin & Barnard’s 
theoretical model is of an axisymmetric flow and they considered a momentum 
balance between the cylindrical flow far upstream of the nose of the slug and an 
assumed cylindrical flow in the annular space far downstream. If the gravitational 
acceleration is directed along the tube axis, however, velocities will become un- 
bounded sufficiently far downstream, the flow will be falling freely there and 
velocities on the slug surface will vary as (gx)*, where xis the distance downstream 
from the stagnation point. The assumption of a cylindrical flow in that region 
is then untenable. Moreover, since a = 0 in their model, the motion can be 
truly axisymmetric only if Q2b/g --f co, with Q presumably finite. It appears that 
the flow postulated corresponds to the situation g = 0 and the proof of non- 
existence of the steady flow of Cype A is thus restricted to the situation at the 
limit Q2b/g = 00, with g = 0. At this limit Benjamin & Barnard showed that 
Ro > 0.52, but the actual value was not determined Cheoretically. 

Fraenkel’s proof is similarly restricted. He did remove the assumption that 
the flow is cylindrical far downstream, thus including the possibility of wavy 
slug surfaces but the restriction to finite velocities remains. His proof takes the 
form of a reductio ad absurdum on this very point. We note that this definitive 
proof of non-existence for the condition g = 0 does not preclude the construction 
of a theory applicable to the present experimental situation. Although the 
gravitational forces may be dominated by centrifugal forces by making Q 
sufficiently large, the gravitational force is non-zero and is directed along the 
tube axis throughout the present experiments. This feature is accordingly 
represented in the theory of 9 3, where it is assumed that g $. 0 so that the proofs 
of non-existence do not then apply. It will be apparent that we should avoid the 
statement that gravity is negligible at large values of Q2b/g since this implies 
that we may take g = 0. It is more appropriate to describe the influence of gravity 
as insignificant in the sense of being of secondary importance although not 
negligible. 

t See figure 6 below for a summary of both sets of results. 
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FIGURE 1. Schematic arrangement of experimental apparatus. 

2. Experiments 
Figure 1 shows schematically the arrangement of the apparatus. A perspex 

tube of internal diameter 65 mm, wall thickness 4.5 mm and length 1.865 m was 
supported in bearings on a rigid channel section and the whole was set vertically 
against a wall. The tube was driven by an electric motor equipped with a con- 
tinuously variable gear box through a system of pulleys which enabled speeds 
to range up to 900rev/min. The hollow core of the driving spindle to which these 
pulleys were attached communicated with the interior of the perspex tube, and 
a filter pump could be attached to the end of the spindle thus allowing water to 
be drawn into the tube via a rubber hose from a tank below. At its lower end the 
perspex tube was sealed with a removable stopper which was free to rotate with 
the tube. When filled, the tube was sealed at its two ends, the water and pump 
connexions were removed and the tube rotated a t  the desired speed. Several 
minutes were allowed to elapse so that the water in the tube had acquired a rigid- 
body rotation by viscous action before the slug was formed by removing the 
stopper. Particularly a t  high rotational speeds, it was found advantageous to 
open the needle valve at  the upper end very slightly so that a minute quantity of 
air could be drawn into the spindle while the lower stopper was being removed. 
This prevented the formation of small cavitation bubbles on the tube axis. 

The rotational speed of the tube was measured with a tachometer consisting 
of a small electric generator run from the driving spindle, the speed being con- 
tinuously displayed on a meter. During its passage along the tube the nose of the 
slug interrupted two narrow light beams which were directed across a diameter 
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FIGURE 3. Variation of Rossby number with !2(b/g)B. - - -, single-term first approximation; 
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FIGURE 4. Variation of nose curvature with R(b/g)). - - -, single-term first approximation; 
~ , three-term second approximation. (The theoretical lines show curvature at the 
stagnation point ; the measured values are mean values measured over a finite arc.) 

of the tube and which fell on two photocells fixed a known distance apart. The 
signals generated in this way were made to start and stop a digital clock, and the 
slug velocity was thus determined. Photographs were taken with a 35 mm reflex 
camera which viewed the slugs against a diffusing screen illuminated from behind. 
Prom the negatives of these photographs the radius of curvature of the nose of 
a slug was measured by projecting an enlarged image on to a screen so as to 
allow comparison with a set of circular arcs. In  order to correct for the distortion 
introduced by the water-filled tube, photographs were also taken of a set of 
concentric circles inscribed on a thin sheet of perspex which was fixed within the 
tube in an axial plane and illuminated in the same fashion as were the slugs. In  
this way it was found that a true radius of curvature a appeared as an image on 
the negative whose apparent radius of curvature at  the axis was 1.63a. 

Measurements of velocity were made for over sixty slugs at  various rotational 
speeds; approximately twenty were photographed for curvature measurement. 
The results of the experimental measurements of velocity plotted in dimensionless 
form? are shown in figures 2 and 3. Figure 4 and figure 5 (plate I )  show the radii 
of curvature, denoted by a, and the general development of slug shape with 
increasing rotational speed. The lines shown on these figures come from approxi- 
mate theoretical models described in 53 .  With no rotation, as expected, the 
present results are in good agreement with those of previous investigators. The 
mean value of Froude number obtained here, Fr = 0-49, was also determined by 
Dumitrescu (1943); the present nose radius of curvature, a = 0-69b, compares 

Cl(b/g)t has been used as abscissa in most cases because this gives a less constricted 
view of the changes which occur when C12b/g < 1. A secondary axis shows the force 
ratio C12blg. 
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FIGURE 6. Variation of Rossby number with q/Q2b.  0 ,  present experiments, u = 0; 
+ , Benjamin & Barnard’s experiments, a = +n. 

well with Dumitrescu’s value a = 0.71b. As Q2b/g increases, the Froude number 
rises quite rapidly while the Rossby number falls at a progressively decreasing 
rate. For values of 12  < Q2b/g < 27, approximately, figure 2 shows that U 
appears to vary linearly with Qb, and figure 3 confirms that the Rossby number 
is essentially constant over this range at  a value Ro = 0.52(3). For lower values 
of Q2b/g, the Rossby number exceeds this value, so that the slug propagates with 
a velocity greater than the maximum group velocity of infinitesimal waves, which 
is co = 0.52Qb. There is thus no upstream influence in this system and the flow 
upstream relative to the slug remains steady. It is interesting to compare these 
results with those of Benjamin & Barnard, who found that, in the horizontal tube 
for 41 < @b/g < 138, the Rossby number was sensibly constant at  a value 
Ro = 0.38. Upstream influence was detected in their experiments, the slug ex- 
hibited wave formations on its surface, and in the photograph of a slug which 
they printed, the motion was only approximately axisymmetric. The most 
notable features of figure 5 (plate l), on the other hand, are the absence of any 
wave formations and the very high degree of symmetry. Figures 4 and 5 show 
that the nose of the slug becomes progressively sharper as Q2b/g is increased. 

It has been suggested by a referee that the two systems should approach 
a common asymptotic value. In figure 6 the data available have been plotted 
against g/Q2b in order that the trend of experimental points in approaching the 
limit g/Q2b --f 0 may be tentatively assessed. For both systems, extrapolation of 
experimental results would involve an assumption that there are no discon- 
tinuities in the behaviour outside the experimental ranges tested. In figure 6 
the range over which the present experimental data have been taken to exhibit 
a constant Rossby number, Ro = 0.52, is 0.035 6 g/Q2b < 0.08. Benjamin & 
Barnard interpreted their data, also shown on this figure, as giving a constant 
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value Ro = 0.38. It is difficult to draw any firm conclusion on the asymptotic 
behaviour beyond saying that in neither set of data does the trend conflict with 
Benjamin & Barnard’s theoretical limitation that Ro > 0-52 for the condition 
g = 0. More data would be desirable for both systems in the range q/a2b < 0.01 
and it is hoped that it will be possible at some later date to modify the apparatus 
so as to investigate this range in more detail for various values of the incidence 
angle GI. The present objective is to construct an approximate theory to describe 
the transition from constant Froude number to constant Rossby number be- 
haviour which is exhibited by the present range of experiments. 

3. Theory 
In  view of the absence of upstream influence in the flow the theoretical problem 

to be considered is far simpler than that which arose from Benjamin & Barnard’s 
experiments. The problem is to construct a solution representing the inviscid 
axisymmetric flow of a steady swirling stream past a gas slug in which the pressure 
is constant. The gravitational field acts along the tube axis and, thus, the 
boundary condition of constant pressure on the slug surface requires the fluid to 
accelerate continuously under the influence of gravity away from the stagnation 
point a t  the nose. For the horizontal tube this boundary condition would 
require the fluid to  be stagnant relative to the slug everywhere on its surface. 

The origin of a set of cylindrical polar co-ordinates (2,  r ,  4) is taken a t  the 
nose of the slug on the centre-line of the tube and moving with the slug a t  velocity 
U. The positive direction of x is vertically downwards and local particle velocities 
in the x and r directions are denoted by u and v respectively. Relative to this 
non-rotating co-ordinate system the local angular velocity w = wfr, where w is 
the azimuthal component of velocity, and the tube rotates with constant angular 
velocity Q. Since the flow is axisymmetric it may be described in terms of 
Stokes’s stream function $, so that ru = a$/8r and rv = - a$fax. From Batchelor 
(1967) the equation governing $ when the flow some distance upstream has rigid- 
body rotation 0 and uniform axial velocity U (so that $ = &Ur2 far upstream) is 

a29 a2$ l a $  2 ~ 2  4 ~ 2  
(4) 

Further, on modifying Batchelor’s equations to include the gravitational term, 
from Bernoulli’s theorem for this situation we have 

-+ - _ _ _  = - r 2 - - $ .  
8x2 8r2 r ar U U2 

and from the constancy of circulation around a circle centred on the axis and 
normal to it, the azimuthal component of velocity w is given by the relation 

(6) 
The surface of the slug will be the stream surface 9 = 0, where, as (6) shows, the 
azimuthal component of velocity is zero. By virtue of (5) the boundary condition 
of constant pressure may be written as 

where q2 = u2 + v2 and po  is the stagnation pressure a t  the origin. 

rw = C($)  = (2QfU) @. 

q 2 -  2gx = 2(p,,-p)fp = 0 on 9 = 0, ( 7 )  
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Solutions of (4) which are applicable to problems in which the fluid is con- 
tained in a cylindrical vessel of radius b, as in the present problem, have been 
given by Squire (1956). These are used to construct a solution of the form 

(8) 
= U (+rz-rb C di -exp (aix/b) J,(y,r/b)), 

i = l  Y i  

in which the quantities di are coefficients whose values are to be determined, 
yi is the ith zero of the first-order Bessel function J1, and where 

a; = yf - (2Bb/U)? (9) 

In constructing such a solution it is assumed on the basis of our experimental 
evidence that a: > 0 so that Ro > 2/y, = 0.52. This restriction ensures the absence 
of upstream influence and it is known that in this range of Rossby number the 
general character of the swirling flow resembles that without swirl (Squire 1956; 
Fraenkel 1956). Indeed for the case when B = 0, where ai = yi, equation (8) 
reproduces those solutions proposed by Davies & TayIor (1950), Dumitrescu 
(1943) and Layzer (1955) for the non-rotating problem. The approximate solu- 
tions subsequently obtained in this paper may be seen as straightforward ex- 
tensions of solutions which have already been obtained for the non-rotating 
system. 

We may comment here that, for arbitrary Q2b/g, questions of the existence 
and uniqueness of solutions remain open. Garabedian (1957) has pointed out 
that in the equivalent plane problem without rotation the flows are not uniquely 
determined by specifying g and the channel dimension b, but that the velocity U 
may also be specified. It appears that there is an infinite number of solutions and 
hence slug shapes which will satisfy the boundary condition expressed in (7), and 
the implication of his work is that a similar indeterminacy exists for the axi- 
symmetric problem without rotation. As has already been seen in l, Benjamin & 
Barnard and Fraenkel have proved that, for the situation g = 0, no steady solu- 
tions of type A exist which satisfy the constant-pressure boundary condition, 
which then assumes the rather different form q = 0 on 3 = 0. In the present 
theory this latter situation does not arise since g is taken to be non-zero. 

The velocity components in the flow described by (8) are 

and 

m 

1 - C diexp (aix/b) J,(yir/b)) 
i=l  

dimi 
v = U - exp (aix/b) J,(y,r/b), 

i = l  Yi 
and since there is a stagnation point at  the origin it follows that 

m 

cli = 1. 
i = l  

The surface of the slug, corresponding to the stream surface Ir/. = 0 in (8), is 
given by 

di 
r = 2b -exp(ccix/b)Jl(yir/b), 

i=l Yi 
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from which the radius of curvature a at the nose is determined as 
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00 

c 4% 

c air: 
i-1 

~t = 4 b 7 .  

i = l  

Following methods of solution in non-rotating situations (Dumitrescu 1943; 
Collins 1965) we expand the left-hand side of (7 )  in a Taylor series about the 
origin to give 

r2 r4 r6 
q2-  2gx = [(@- 2gx);l- + [ (q2 -  2gx)rl- + [ (q2 -  2gx);;’I F! + ... . 2 !  4! 

Here primes denote derivatives with respect to r of a quantity evaluated on 
$ = 0 and regarded as a function of r only, and the suffix 0 denotes evaluation at  
the origin. Only derivatives of even order appear in the expansion since q2 and 
- g x  are even functions of r .  The coefficients di are then evaluated in principle 
by determining those values necessary to reduce all terms in (15) to zero. 
Elimination of the coefficient of r2 requires that 

(15) 

or 

where a is the radius of curvature at  the nose of the slug, or 

u = (ga)+/[av’/U],. 

This result, which is exact and which reproduces the non-rotating result (Collins 
1965; Batchelor 1967), underlines the role played by the radius of curvature of 
the slug nose in determining the slug velocity. The quantity avhlU is a dimension- 
less constant dependent only on the slug geometry. With the velocity component 
v given by (11) and the radius of curvature by ( i4)  the slug Froude number is 
found to be 

a result which may be used to eliminate the Froude number from subsequent 
coefficients in (15). 

Consider n terms in the series in (8) .  Equation (12) provides one relationship 
for the n coefficients di and the remaining n - 1 equations necessary for solution 
arise by eliminating all coefficients up to and including the coefficient of r2n in 
( I q ,  employing (18)  in the process. With the di determined in this way, the slug 
Froude number, its nose radius of curvature and the slug shape follow from (19), 
(14) and (13). In principle n = 00 terms would be needed in order to solve the 
free-boundary problem but the equations which arise for the coefficients di 
(which are functions of Rossby number) are of rapidly increasing complexity as 
n is increased and simple analytical relationships for the terms di are not obtained. 
In  order to proceed some approximation is necessary, and as with the non- 
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rotating approximate solutions it is found that satisfactory descriptions of the 
experimental data may be obtained using only very small numbers of terms in 
the series. 

The objective of approximate solutions may be seen by reference to equation 
(18) to be the construction of a suitable model of the slug geometry, particularly 
in the vicinity of its stagnation point, in order that the dimensionless quantity 
avJ U may be deduced from the model. This was essentially the approach adopted 
by Davies & Taylor in dealing with spherical-cap bubbles. In  fact, just one 
term of the series in (8) describes a flow past a shape of slug-like character although, 
as will appear shortly, the radius of curvature at  its nose is rather high. This single- 
term approximation was also used for the non-rotating slug by Davies & Taylor, 
who chose to satisfy the constant-pressure boundary condition a t  the point on 
the slug where r = +b. The present extension of the single-term approximation to 
the swirling flow is, however, more closely associated with Layzer’s (1955) work 
on the non-rotating slug since he satisfied the boundary condition at  the nose 
in the same manner as is employed here. Approximations will be identified by 
the number of terms employed in (8) and by the number of coefficients eliminated 
in (15). Thus, the ‘n-term mth approximation’ employs n terms in (8) and 
eliminates m terms in (15). 

On setting n = 1, equation (12) shows that d ,  = 1. The Proude number for 
this single-term first approximation then follows from (19) as 

and the nose radius of curvature is given by 

with y1 = 3.8317 ... in both equations. When compared with experiment as 
shown by the broken lines in figures 2 and 3, this simple approximation is seen 
to provide a very good description of the range of experimental data recorded 
in the present experiments. With i2 = 0, equations (20) and (21) reproduce 
Layzer’s results, which are 

U/(gb)B = 0.511 with a/b = 1.014. (22) 

Experimental values for Q = 0 are Pr = 0.49 with a/b = 0.69. At the highest 
value of @b/g employed here (that is, Pb/g  = 27) equation (20) gives Ro = 0.56, 
compared with the experimental value of Ro = 0-52(3). The single-term first 
approximation is seen to conform with the assumption that Ro > 0.52 over the 
range of the experiments and indeed for all @b/g. The limiting behaviour of (20) 
is that, as @b/g + co with g + 0, U/(gb)* --f 00 in a manner such that 

(The same result would be obtained by allowing g --f 0 in (20).) 
As it is derived from an approximate flow pattern this result cannot be claimed 

to describe the asymptotic behaviour of the exact solution to the free-boundary 
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problem. What can be said is that, provided that the physical situation conforms 
with the assumptions of the theory, namely g =!z 0 and Ro > 0.52, equation (23) 
provides a first approximation to the behaviour as L12b/g becomes moderately 
large. 

On recalling that the objective is to construct a model of the flow geometry, 
in particular near the stagnation point, it will be clear from figure 4 that 
a major deficiency of the single-term first approximation is that its nose radius 
of curvature is consistently too high, although the general variation with C12b/g 
conforms well with that found experimentally. We now consider the development 
of Dumitrescu’s approximate solution for the non-rotating slug to cover the 
swirling flow situation. His solution is known to provide a good description of the 
slug shape and the Froude number and it constitutes a three-term second approxi- 
mation in which the third equation required for evaluating the coefficients di 
arises by assigning arbitrary values to  the nose radius of curvature a given by 
equation (14). Dumitrescu derived second approximations to the Froude number 
for values of a in the range a = 0-5b-0.9b, demonstrating incidentally that there 
is an infinite number of approximate solutions which will satisfy the constant- 
pressure condition to this level of approximation. The appropriate nose curvature 
and hence the Froude number could have been selected by comparison with the 
shape which he observed experimentally but Dumitrescu adopted an alternative 
approach which has great appeal because it takes into account the influence of 
the gross features of the flow some way downstream on the flow near the stagna- 
tion point. His method thus provides a very good description of the overall 
geometry of the slug. It assumes that the nose shape is spherical with radius of 
curvature equal to that a t  the stagnation point and then selects the nose curvature 
which allows this shape to merge with the shape some way downstream where the 
liquid falls freely under gravity. A one-dimensional model of the flow in that 
region shows that the asymptotic form is given by the expression 

Fr2 - X - _  
b 2[1- ( ~ / b ) ~ ] ~ ’  (24) 

The coefficients di have been recalculated? for this problem and found to be 

d, = 0.801090, d, = 0.138498, d, = 0.060412, (25) 
which give 

U/(gb)A=, = 0.496, (a/b),=, = 0.75, (26) 

in agreement with Dumitrescu’s solution. 
The continuous lines in figures 2, 3 and 4 are produced by substituting the 

values given in (25) into (14) and (19) and the agreement with experiment is 
seen to be excellent. We note that by neglecting the dependence of the coefficients 
on Rossby number this approximate solution is strictly speaking a three-term 
second approximation only when Ll = 0. One feature it has is that, in accordance 
with the assumption that Ro > 0.52, the solution must be truncated a t  02b/g = 34 

t Dumitrescu’s coefficients are defined slightly differently and in fact the values finally 
obtained are not quoted in his paper. From the present solution, Dumitrescu’s coefficients 
for alb = 0.75 are inferred to be k, = - 0.10370, k, = - 0.00979 and k3 = - 0.00295. 
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when this value of Ross by number is achieved. This feature may possibly be 
brought about by ignoring the dependence of di on Rossby number. 

4. Concluding remarks 
Agreement with experiment is a pleasing feature of both approximate theories 

considered here and this gives confidence in the ideas on which they are based. 
Dumitrescu’s method provides a neat ad hoc model for the solution to the free- 
boundary problem for the non-rotating situation. It successfully describes the 
flow near the stagnation point while incorporating the essential features of the 
flow downstream (see, for example, the comparison between the experimental 
and theoretical shape in Dumitrescu’s figure 9). With the shape at  Q = 0 de- 
termined in this way, the subsequent development of the shape with increasing Cl 
is then satisfactorily described through the quantity ai appearing in (8). The 
major influence appears to come from the first term, which alone would provide 
a tolerable approximate description of the behaviour. 
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FIOVTKE 6 .  Bubble shapcs a t  various vitliics of a2b/g.  The lines above and below cadi 
photograph define the  cxtrrrial dimensions of the tiilie. 

COT,l,INH * \D HOXTH (FacimJ p. 528) 


